
EECS 440 System Design of a Search Engine
Winter 2021

Lecture 11: The index and constraint solver

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

1

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda

1. Course details.
2. The index.
3. The constraint solver.

2

Agenda

1. Course details.
2. CRCs.
3. The index.
4. The constraint solver.

3

details
1. Thank you all for meeting with me over the weekend. I enjoyed our

meetings and I hope you found them helpful.

2. Every team appears to be pretty much exactly where you should be.
Most of you appeared to like and enjoy working with your teammates,
which is a huge factor in success.

3. Most discussions were about how to split up your engine across multiple
AWS machines multiple identical instances of an entire search engine
that only crawled and indexed a slice of the web. You should be able to
run and debug one of these on your laptop, crawling and indexing
perhaps a few hundred pages.

4

details
Suggested plan for most teams:

1. Get your crawlers finished, including robots.txt and a crash-resistant way
of managing the frontier.

2. Start work on the hashing homeworks to learn how to build the index.

3. Begin working on defining some C++ interfaces to the remaining parts,
e.g., you’ll pass an object with a set of methods even if you’re not yet
sure how they’ll work.

4. Read my paper on paper on ranking.

5

midterm
Sorry, we are only beginning work on it so I nothing to report except that it
will all short answer, mostly asking about concepts. If I think something’s
important enough to put on an exam, I probably thought it was important
enough to talk about in lecture. I don’t release previous and I ask that you be
on your honor not to seek them out.

6

Agenda

1. Course details.
2. The index.
3. The constraint solver.

7

Index
Basic problem: Create an inverted word index of all the documents
that have been crawled, allowing you to report all the documents and
individual locations (postings) where any given word was found.

Due to the size, it will all have to be on disk but memory-mapped into
your address space. You’ll depend on the virtual memory manager to
keep heavily-referenced sections, e.g., the dictionary at the front in
memory. But the bottleneck will be disk access.

Search time will grow linearly with the size of the index because every
matching page will have to found and scored unless you short-circuit,
e.g., by arbitrarily cutting it off after the first 20,000 matches to avoid
getting trapped by searches for “a” or “the”.

Most of size will be in the posting lists, so if the posting lists can be
compressed, your engine will be faster.

Master
index

A search engine index is typically a set of files

List of index
chunks

Index
chunk

Index
chunk

Index
chunk

Index
chunk…

The master index might itself be a set of files capturing the overall state of the
search engine.

List of URLS Inverted word index

Each index chunk

FrontierConfiguration
settings

Master
index

A search engine index is typically a set of files

Index
chunk

Index
chunk

Index
chunk

Index
chunk…

Typically, as pages are crawled and parsed, they’re added to the next index chunk
under construction. Once a chunk is full, you start filling a new chunk. Don’t
make them too small nor too big, but there’s a huge in-between. Common choices
might be a few hundred megabytes.

When a query comes in, each chunk must be searched, either sequentially or in
parallel with separate threads.

Dictionary Posting list Posting list Posting listPosting list …

Common
Header

Type-specific
data Index Post Post Post Sentinel…

The inverted word index within a chunk.

A posting list

Delta from
previous
post loc

Type-specific
data

An individual post

Dictionary Posting list Posting list Posting listPosting list …

The inverted word index file format

Dictionary contains:
1. Number of tokens in the index.
2. Number of unique tokens in the index.
3. Number of documents in the index.
4. Hash table to translate from token to offset to the posting list.
5. Since collisions are possible, it’s possible you might have to skip over

the collisions, likely pasted one after another.

Tokens can be decorated to distinguish words in the title vs. the body or
URL, etc., and to create special tokens, e.g., end-of-document.

Common
Header

Type-specific
data Index Post Post Post Sentinel…

A posting list

Delta from
previous
post loc

Type-specific
data

An individual post

Most posting lists will be of actual words found on a page. But there will be at
least one other important posting list of document ends, marking the boundaries
between documents pasted one after another in the index.

All the posts on a given list likely have the same type-specific data but the amount
of data and number of bytes might vary and be whatever you like. For a word, the
type-specific information might be title or bold. For a document end, it might be
the URL (or an index into a table of URLs), the document title, document statistics,
whatever you want.

It’s important to keep the posts as small as
possible on average by giving the location as a
delta from the previous post and then
encoding that delta in a variable number of
bytes, e.g., as UTF-8.

Index functions
Index stream readers (ISRs)

first(t) returns the first position at which t occurs.

last(t) returns the last position at which t occurs.

next(t, current) returns the next position where t occurs after the
current position.

prev(t, current) returns the last position where t occurs before the
current position. But slow and usually omitted.

Numbering locations
You have a choice whether to number locations relative to:

1. Start of the document or

2. Start of the index

If you go with start of document, individual word locations will be (docid,
offset).

If you go with start of index, a word location is simply an offset, and the deltas
between locations will likely to be a smaller binary number. You will probably
enter document boundaries as postings.

Dictionary
Words are usually case-folded.

Special characters and numbers are often discarded but perhaps one
should only discard outer punctuation.

May do stemming, lemmatization and/or stop word elimination but it’s
unclear how helpful this is. Tends to increase the number of matches
but recall isn’t as important for a search engine as precision.

At Microsoft, we discarded punctuation but then needed to special
case certain terms, e.g., C++. We used dictionary-based word-breaking
on URLs and with documents and queries in Japanese, which
happened to be an important market for Microsoft.

Stemming and Lemmatization

1. The common goal is to reduce a word a simpler form.

2. Stemming reduces a token to pseudostems (not necessarily
real words) using a heuristic process that chops off or
replaces prefixes or suffixes.

3. Lemmatization uses a vocabulary to find the dictionary form
of the word, known as a lemma.

4. This is a special case of normalization, like lower-casing all
the letters.

17

Porter Stemmer

M.R. Porter, “An algorithm for suffix stripping”, 1980.
https://tartarus.org/martin/PorterStemmer/def.txt
Probably the most popular.
Uses 5 phases of word reductions.
Each phase has rules for replacing the longest suffix.
Downloadable as a library but off-limits for the project.

18

https://tartarus.org/martin/PorterStemmer/def.txt

19

Rules can have conditions

*S - the stem ends with S
(and similarly for the other
letters).
v - the stem contains a
vowel.
*d - the stem ends with a
double consonant (e.g. -TT, -
SS).
*o - the stem ends cvc,
where the second c is not W,
X or Y (e.g. -WIL, -HOP).

Step 1a
SSES -> SS caresses -> caress
IES -> I ponies -> poni

ties -> ti
SS -> SS caress -> caress
S -> cats -> cat

Step 1b
(m>0) EED -> EE feed -> feed

agreed -> agree
(*v*) ED -> plastered -> plaster

bled -> bled
(*v*) ING -> motoring -> motor

sing -> sing

Dictionary
May have multiple kinds of things in the dictionary, e.g., document
boundaries vs. words.

Each type of post may have attributes, for example:

word Bold, heading, large font.

document URL, number of word or unique words in the URL, title,
body, anchor.

May also distinguish variations on word, e.g., only in the URL vs. only in
the title, by decorating the word when entering it into the dictionary.

Posting list
1. Huge.

2. Important to reduce space.

3. Usual strategy is to encode each new location as a delta from the
previous.

4. Further encode with varying numbers of bits depending on the delta.

5. Some number of bits may encode attributes.

6. Certainly don’t want to have to add all the previous deltas (there could
be millions of them!) to know the actual location number.

7. Synchronization points allow seeking to a location just prior to desired
location, then scanning forward, so you only have to add up a smaller
number of deltas.

Things to decide
In addition to the posting list, what information will you have for each entry?
1. number of occurrences in the corpus
2. number of documents containing this word
What information will you keep for each index?
1. number of documents in the corpus
2. total number of words
3. total number of unique words
What kinds of posts will you have and what information will each contain?
What attributes or decorations will you use?
How will you encode the location numbers?
Will you have synchronization points?

Decorating

Add characters that get stripped out during HTML parsing
to indicate special characteristics or types of posts, e.g.,

amazon amazon in the body text
#amazon amazon only in the URL
@amazon amazon only in the title
$amazon amazon only in the anchor text
% End-of-document token.

Might also be used for stemming:

swim* swim, swims, swimming, etc.

Common
Header

Type-specific
data Index Post Post Post Sentinel…

A posting list

Common header contains:
1. Number of occurrences of this token in the index.
2. Number of documents in which this token occurs.
3. Type of token: end-of-document, word in anchor, URL, title or body.
4. Size of the list for skipping over collisions.

For an end-of-document list, type-specific data might include:
1. Lengths of the document, URL and title.
2. Amount of anchor text, number of unique words.
3. Any additional static rank information, e.g., date, number of links pointing to

the page, etc.

Post

Post

Post

…

Sentinel

High bits of
seek location

Seek offset in
the postings

Actual location
of that post.

0000 0000 0 32

0000 0001 531 20142

0000 0010 2012 912348

: : :

Common
Header

Type-specific
data Index Post Post Post Sentinel…

A posting list

Posting list index

Seek
location

Synchronization points

26

High bits of
seek location

Seek offset in
the postings

Actual location
of that post.

0000 0000 0 32

0000 0001 531 20142

0000 0010 2012 912348

: : :

Posting list index

Synchronization points

Imagine we used 16-bit
location numbers and
consider a seek to hex
0x01AD.

We might use the high
byte, 0x01, as the index
into a seek table of 256
entries.

SeekTable[0x01] should
contain two members:

1. A pointer to the first
posting that occurs at a
word location >=
0x0100 or null if there
isn't one.

2. The actual word
location of that first
post, perhaps 20142.

27

High bits of
seek location

Seek offset in
the postings

Actual location
of that post.

0000 0000 0 32

0000 0001 531 20142

0000 0010 2012 912348

: : :

Posting list index

Synchronization points

To seek to a specific word
location without having to
start from the beginning,
adding up all the deltas until
you get there, you use the
seek table to get you close.

It gives you a synchronization
point where you can jump in
and start reading, looking for
the location you want.

From there, you read
forward, accumulating
location deltas until we either
hit a post at the seek address
or the first post after that (or
end of list).

Delta from
previous

post

Delta from previous post
Type-

specific
data

The offset will typically be encoded with a
variable length scheme like UTF-8.

If only a few bits of type-specific information are needed, they
can be encoded into the low bits of the UTF-8 character.

Bits … 4 3 2 1 0

00 Normal
01 Italic
10 Bold
11 Heading

Anchor text tends to duplicate, with many links to the same page with
the same anchor text.

For a word in anchor text, it can be useful to sort the phrases, retaining
only the unique phrases but with counts on the words.

Because the counts can be so large, it can be helpful to shrink the
number of bits required with the log function.

Delta from previous post log(Count)

Bits … 4 3 2 1 0

Agenda

1. Course details.
2. CRCs.
3. The index.
4. The constraint solver.

30

Constraint solver

Given an inverted word index and a constraint, e.g., a list of
words that must appear together or as a phrase in a document,
find the list of matching documents.

Original inventor

1. Mike Burrows at AltaVista.

2. Briefly worked for Microsoft at the very beginning of what
became Bing and contributed this to the initial design.

3. (Left because his girlfriend was in the SF Bay area, shortly
before I joined the team.)

32

Two uses

1. Find matching documents. Skip over documents that don’t
match as fast as possible.

2. Rank those documents. Scan through all the occurrences of
the search words and phrases on a matching page as fast as
possible.

33

Basic idea to create ISR structures that match the query constraints.
Each ISR can find the next occurrence of whatever it’s looking for.

"apollo moon landing" | (apple banana)

OR ISR

Phrase ISR AND ISR

apollo ISR moon ISR landing ISR apple ISR banana ISR

The ISR structure

Index Stream Reader (ISR)

Finds the next occurrence of the desired token or combination of child
ISRs.

ISRWord Find occurrences of individual words.

ISREndDoc Find occurrences of document ends.

ISROr Find occurrences of any child ISR.

ISRAnd Find occurrences of all child ISRs within a single
document.

ISRPhrase Find occurrences of all child ISRs as a phrase.

ISRContainer Find occurrences of contained ISRs in a single
document not containing any excluded ISRs.

typedef size_t Location; // Location 0 is the null location.
typedef size_t FileOffset;

typedef union Attributes
{
WordAttributes Word;
DocumentAttributes Document;
};

class ISR;

class Post
{
public:

virtual Location GetStartLocation();
virtual Location GetEndLocation();
virtual Attributes GetAttributes();

};

class PostingList
{
private:

struct PostingListIndex
{
FileOffset Offset;
Location PostLocation;
};

PostingListIndex *index;
virtual char *GetPostingList();

public:
virtual Post *Seek(Location);

};

class Index
{
public:

Location WordsInIndex,
DocumentsInIndex,
LocationsInIndex,
MaximumLocation;

ISRWord *OpenISRWord(char *word);
ISRWord *OpenISREndDoc();

};

class Dictionary
{
public:

ISR *OpenIsr(char *token);
Location GetNumberOfWords();
Location GetNumberOfUniqueWords();
Location GetNumberOfDocuments();

};

class ISR
{
public:

virtual Post *Next();
virtual Post *NextDocument();
virtual Post *Seek(Location target);
virtual Location GetStartLocation();
virtual Location GetEndLocation();

};

class ISRWord : public ISR
{
public:

unsigned GetDocumentCount();
unsigned GetNumberOfOccurrences();
virtual Post *GetCurrentPost();

};

class ISREndDoc : public ISRWord
{
public:

unsigned GetDocumentLength();
unsigned GetTitleLength();
unsigned GetUrlLength();

};

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

Consider these posting lists

To read and merge these lists, we need to move from one entry to the next.

We'll do that with an ISR (index stream reader).

The ISR for each token has to be able to report its current location and
attributes, and it needs Next() and Seek() functions.

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick | fox 10 27 87 105 106 513 515 518 520 550 1200

OR'ing streams

An OR ISR simply merges the streams.

No need to pay attention to document boundaries. Each post is in whichever
posting list and whatever document it happens to be.

class ISROr : public ISR
{
public:

ISR **Terms;
unsigned NumberOfTerms;

Location GetStartLocation()
{
return nearestStartLocation;
}

Location GetEndLocation()
{
return nearestEndLocation;
}

Post *Seek(Location target)
{
// Seek all the ISRs to the first occurrence beginning at
// the target location. Return null if there is no match.
// The document is the document containing the nearest term.
}

Post *Next()
{
// Do a next on the nearest term, then return
// the new nearest match.
}

Post *NextDocument()
{
// Seek all the ISRs to the first occurrence just past
// the end of this document.
return Seek(DocumentEnd->GetEndLocation() + 1);
}

private:
unsigned nearestTerm;
// nearStartLocation and nearestEndLocation are
// the start and end of the nearestTerm.
Location nearestStartLocation, nearestEndLocation;

};

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox ?

AND'ing streams

AND'ing of terms should find occurrences of all the terms within a single
document.

Should it return every possible combination, every combination only changing
the nearest ISR or the first match in each matching document?

AND'ing streams

To determine what document a post falls within, we advance a #DocEnd ISR to
the next document end, where we can retrieve information about the
document, including its length.

This tells us the start and end points of the document and whether all the word
ISRs point within the same document.

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox ?

Easier to consider if we show the document boundaries.

AND'ing streams

AND'ing of terms should find occurrences of all the terms within a single
document.

Should it return every possible combination, every combination only changing
the nearest ISR or the first match in each matching document?

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox How many possible combinations?
Can you reach all of them in a single pass, all ISRs only moving
forward?

AND'ing streams

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox How many possible combinations? 6
Can you reach all of them in a single pass, all ISRs only moving
forward? No.

Should it return every possible combination, every combination only changing
the nearest ISR or the first match in each matching document?

AND'ing streams

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox How many possible combinations? 6
Can you reach all of them in a single pass, all ISRs only moving
forward? No.

Should it return every possible combination, every combination only changing
the nearest ISR or the first match in each matching document?

The point of the constraint solver is to find matching pages. Once any match on
the page has been found, it's the ranker's job to figure out what to do next

AND'ing streams

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox How many possible combinations? 6
Can you reach all of them in a single pass, all ISRs only moving
forward? No.

You probably want both:

Next() Advance the nearest ISR and look for the first match.

NextDocument() Seeks all the ISRs past the end of the document then looks
for the first match.

AND'ing streams

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox NextDocument() matches

Next() Advance the nearest ISR and look for the first match.

returns (10 87) (27 87) (105 87) (105 106) (513 515)
(518 515) (518 550) (520 550)

NextDocument() Seeks all the ISRs past the end of the document then looks
for the first match.

returns (10 87) (513 515)

AND'ing streams

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox NextDocument() matches

To look for a new match, your objective is to skip forward through the index as
fast as possible.

If a match is to be made including any of the present set of ISR positions, it
must include whatever post is furthest down the index.

So there's no point in considering posts on the other lists that occur before the
beginning of the document containing that furthest post.

AND'ing streams

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

quick fox NextDocument() matches

To look for a match:

1. Advance the #EndDoc ISR to just past the furthest ISR to get the length of
the document.

2. Advance the other ISRs to their first matches starting at the beginning of
the document.

3. If any ISR is past the end of document, you pick the new furthest and
continue searching.

class ISRAnd : public ISR
{
public:

ISR **Terms;
unsigned NumberOfTerms;
Post *Seek(Location target)

{
// 1. Seek all the ISRs to the first occurrence beginning at
// the target location.
// 2. Move the document end ISR to just past the furthest
// word, then calculate the document begin location.
// 3. Seek all the other terms to past the document begin.
// 4. If any term is past the document end, return to
// step 2.
// 5. If any ISR reaches the end, there is no match.
}

Post *Next()
{
return Seek(nearestStartLocation + 1);
}

private:
unsigned nearestTerm, farthestTerm;
Location nearestStartLocation, nearestEndLocation;

};

class ISRAnd : public ISR
{
public:

ISR **Terms;
unsigned NumberOfTerms;
Post *Seek(Location target)

{
// 1. Seek all the ISRs to the first occurrence beginning at
// the target location.
// 2. Move the document end ISR to just past the furthest
// word, then calculate the document begin location.
// 3. Seek all the other terms to past the document begin.
// 4. If any term is past the document end, return to
// step 2.
// 5. If any ISR reaches the end, there is no match.
}

Post *Next()
{
return Seek(nearestStartLocation + 1);
}

private:
unsigned nearestTerm, farthestTerm;
Location nearestStartLocation, nearestEndLocation;

};

Phrase match

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

"quick brown fox" (513 514 515)

Length of the match must equal to sum of the lengths of the terms.

If a match is to be made including any of the present set of ISR positions, it
must include whichever post is furthest down the index.

Terms must be in consecutive locations.

Phrase match

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

"quick brown fox" (513 514 515)

Can phrase matches be overlapping?

Do you need to pay attention to document boundaries?

If it’s not a match, do all the ISRs have to move?

Terms must be in consecutive locations.

Phrase match

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

"quick brown fox" (513 514 515)

Can phrase matches be overlapping? Yes, if beginning and ending terms match.

Do you need to pay attention to document boundaries? No, not if you skip a
location number between documents. All phrase matches will always be within
a single document.

If it’s not a match, do all the ISRs have to move? No, you iterate, trying to move
the nearest to correct position relative to the furthest.

Terms must be in consecutive locations.

Phrase match

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

"quick brown fox" (513 514 515)

So, what are the functions you might want? Probably want both Next() and
NextDocument().

Phrase match

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

"quick brown fox" (513 514 515)

So, what are the functions you might want? Probably want both Next() and
NextDocument().

Phrase match

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

"quick brown fox" (513 514 515)

To look for a match:

1. Pick the furthest ISR.

2. Advance the other ISRs to their first matches starting at exactly where they
should appear to be a matching phrase.

3. If any ISR is past the desired location, pick the new furthest and continue
searching.

class ISRPhrase : public ISR
{
public:

ISR **Terms;
unsigned NumberOfTerms;
Post *Seek(Location target)

{
// 1. Seek all ISRs to the first occurrence beginning at
// the target location.
// 2. Pick the furthest term and attempt to seek all
// the other terms to the first location beginning
// where they should appear relative to the furthest
// term.
// 3. If any term is past the desired location, return
// to step 2.
// 4. If any ISR reaches the end, there is no match.
}

Post *Next()
{
// Finds overlapping phrase matches.
return Seek(nearestStartLocation + 1);
}

};

NOTs

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

brown -fox 790
-fox Not allowed

A NOT matches anywhere the term doesn't appear, which is likely pretty nearly
everywhere.

So we don't allow searches for nots alone and we don't check for exclusions
until we've found an otherwise matching page.

Terms that cannot appear in a matching document.

Container ISRs

quick 10 27 105 513 518 520
brown 28 50 62 70 514 790
fox 87 106 515 550 1200
#DocEnd 112 570 1006 1704

brown -fox 790
-fox Not allowed

(AND'ing is a special case of a container with no exclusion ISRs.)

ISRs that must match and those that must not within a document.

class ISRContainer : public ISR
{
public:

ISR **Contained,
*Excluded;

ISREndDoc *EndDoc;
unsigned CountContained,

CountExcluded;
Location Next();

Post *Seek(Location target)
{
// 1. Seek all the included ISRs to the first occurrence beginning at
// the target location.
// 2. Move the document end ISR to just past the furthest
// contained ISR, then calculate the document begin location.
// 3. Seek all the other contained terms to past the document begin.
// 4. If any contained erm is past the document end, return to
// step 2.
// 5. If any ISR reaches the end, there is no match.
// 6. Seek all the excluded ISRs to the first occurrence beginning at
// the document begin location.
// 7. If any excluded ISR falls within the document, reset the
// target to one past the end of the document and return to
// step 1.
};

Post *Next()
{
Seek(Contained[nearestContained]->GetStartlocation() + 1);
}

private:
unsigned nearestTerm, farthestTerm;
Location nearestStartLocation, nearestEndLocation;

};

The query language and the ISRs can be recursive

"apollo moon landing" | (apple banana)

OR

Phrase AND

"apollo" "moon" "landing" "apple" "banana"

The parse tree

The query language and the ISRs can be recursive

"apollo moon landing" | (apple banana)

OR ISR

Phrase ISR AND ISR

apollo ISR moon ISR landing ISR apple ISR banana ISR

The ISR structure

OR ISR

Phrase ISR AND ISR

apollo ISR moon ISR landing ISR apple ISR banana ISR

The ISR structure

OR

Phrase AND

"apollo" "moon" "landing" "apple" "banana"

The parse tree

"apollo moon landing" | (apple banana)

The trees are the same.

	EECS 440 System Design of a Search Engine�Winter 2021�Lecture 11: The index and constraint solver
	Agenda
	Agenda
	details
	details
	midterm
	Agenda
	Index
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Index functions
	Numbering locations
	Dictionary
	Stemming and Lemmatization
	Porter Stemmer
	Slide Number 19
	Dictionary
	Posting list
	Things to decide
	Decorating
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Agenda
	Constraint solver
	Original inventor
	Two uses
	Slide Number 34
	Index Stream Reader (ISR)
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68

